Where Is Indian Tejas MKII And AMCA In The Global Fighter Jets Competition?

The Balakot air strikes in February 2019 and the air combat thereafter in which multiple licensed produced Su-30MKI of Indian Air Force (IAF) had to engage a American-made F-16 of Pakistan Air Force (PAF) has once again brought IAF modernisation back into focus.

The then IAF Chief, Air Chief Marshal BS Dhanoa, has said in many forums that IAF has hit an all time low of 30 fighter squadrons vis-a-vis the government authorised 42. He has highlighted the convergence of strategic interests between China and Pakistan and their rapidly modernising air forces. IAF on the other hand has been slowly losing the clear combat edge that it had enjoyed over Pakistan in 1971 both in terms quality and numbers.

Aerospace is the domain of the future and the one who controls it will control the planet. It is clear that IAF must win the air war for the Army and Navy to win the surface war. Technology intensive air power requires faster replacement of assets due to quicker obsolescence.

While IAF has a plan ‘B’ to fight with what it has, if forced into conflict, but numbers are clearly not adequate to fully execute an air campaign in a two-front scenario. It is incumbent upon the nation to provide IAF assets for the task it has been entrusted. It is imperative that IAF quickly rebuilt the squadron strength and acquire modern fighters that are as good or better than the adversaries.

Developing indigenous aircraft is critical for India to become a global power. China has already moved way ahead. The Light Combat Aircraft (LCA) ‘TEJAS’ and the Advanced Medium Combat Aircraft (AMCA) are the main two aircraft projects. It is important to continuously monitor their progress.

4th Generation Fighter Jet

The 4th generation fighters are mostly multi-role; use ‘Energy-Manoeuvrability’ concept for performing ‘fast transients’ – quick changes in speed, altitude, and direction – as opposed to just high speed; lightweight aircraft with higher thrust-weight ratio, and use digital Fly-By-Wire (FBW) flight controls which allow relaxed static stability flight and in turn agility.

They have electronically managed power-plants. Pulse-Doppler fire-control-radars give look-down/shoot-down capability. Head-up displays (HUD), hands-on-throttle-and-stick (HOTAS) controls, and multi-function displays (MFD) allow better situational awareness and quicker reactions. Composite materials help reduce aircraft weight. Improved maintenance design and procedures reduce aircraft turnaround time between missions and generated more sorties. The MiG-29, SU-30, JF-17, Tejas MK-1A, J-11A/B, J-15 and Mirage-2000 are all in this category.

4.5 Generation Fight Jets

A sub generation called the 4.5th generation fighters evolved in the last decade, which saw advanced digital avionics, newer aerospace materials, modest signature reduction, and highly integrated systems and weapons. These fighters operated in network-centric environment. Key technologies introduced include multi-function active electronically scanned array (AESA) radars; longer range BVR AAMs; GPS-guided weapons, solid-state electronics, helmet-mounted sights (HMDS), and IRST, improved secure, jamming-resistant data-links.

A degree of super-cruise ability (supersonic without afterburner) was introduced. Stealth characteristics focused on front-aspect radar cross section (RCS) reduction through limited shaping techniques. Eurofighter Typhoon Tranche 3, Dassault Rafale FR3, F-16V, Super Hornet, F-15EX and Saab JAS 39 Gripen E were in this category.

Russian And Chinese Fighters

Russia yet to upgrade 4th generation aircraft with new technologies. Su-30MKI, Su-30MKM, Su-35, MiG-35 and Su-57 featured thrust vectoring engine nozzles to enhance manoeuvring, but lack modern electronics, AESA radar and electronic warfare capability.

China is more likely to progress in the field of solid-state electronics, AESA radar and avionics than Russian Sukhoi or Mikoyan Design Bureau, subsidiaries of United Aircraft Corporation. China successfully reverses engineered Israeli Lavi and Russian Su-27 into J-10C and J-16 respectively. J-20, J-10C and J-16 offer solid-state electronics and an AESA radar.

Although China operationalize J-20 fighter jet, but J-20 fighter is yet to receive any attributes of fifth generation fighter jet such as supercruise capability, internal weapons bay, reduction of heat signature from rear fuselage and a better engine.

On the other hand, Russian Su-57 is almost ten years behind the schedule and back to drawing board to rectify technical defects, engines problems and flight control system malfunctions. If Sukhoi can fix flight control system and engine by 2024 then Sukhoi could deliver a production variant Su-57 in 2028 after a lengthy factory trials.

Fifth Generation Fighter Jet

The fifth generation was ushered in by the Lockheed Martin F-22 Raptor in late 2005. These aircraft are designed from the start to operate in a network-centric combat environment, and to feature extremely low, all-aspect, multi-spectral signatures employing advanced materials and shaping techniques. AESA radars are with high-bandwidth low-probability of intercept.

IRST and other sensors are fused in for Situational Awareness and to constantly track all targets of interest around the aircraft 360 degree bubble. Advanced avionics and glass cockpit, and improved secure, jamming-resistant data-links are other features. Avionics suites rely on extensive use of very high-speed integrated circuit (VHSIC) technology and high-speed data buses.

Fifth-generation fighters target “first-look, first-shot, first-kill capability”. In addition to high resistance to ECM, they can function as a ‘mini-AWACS’. Integrated electronic warfare system, integrated communications, navigation, and identification (CNI), centralised “vehicle health monitoring”, fibre-optic data-transmission, and stealth are important features. Manoeuvre performance is enhanced by thrust-vectoring, which also helps reduce takeoff and landing distances. Super-cruise is inbuilt.

To maintain low signature primary weapons are carried in internal weapon bays. The current fifth-generation fighter include Lockheed Martin F-35 Lightning II and F-22 Raptor.

Prospective Fifth And Sixth Generation Fighter

Turkey and India are working on technical feasibility to produce fifth-generation fighters. Turkey envisioned TFX programme and India envisioned AMCA programme, both programs are heavily dependent on American and European technologies.

The purchase of Russian S-400 system by India and Turkey will put AMCA and TFX programme in jeopardy as American and European companies may not cooperate with Hindustan Aeronautics and Turkish Aerospace Industries due to CAATSA sanctions.

South Korea is building a prototype fifth-generation fighter dubbed as KFX fighter jet which most likely to fly in 2021.

Japan, Germany, France, Sweden, Italy, Spain and America are ahead of all countries in the field of sixth-generation fighter jets.

Northrop Grumman is building US Navy’s sixth-generation F/A-XX fighter, Dassault Aviation and Airbus are building Fraco-German sixth-generation FCAS, and Sweden, UK, Italy and Spain joined together to build sixth-generation Tempest Fighter jets.


It took 40 years for Indian Hindustan Aeronautics to build HAL Tejas MK-1A. The ‘TEJAS’ was envisaged to be a 4th generation fighter and the AMCA is meant to be a 5th generation fighter.

IAF has committed for 200 TEJAS Mk-II aircraft, taking the total requirement of TEJAS to over 300. TEJAS Mk II was originally planned to retain basic aircraft shape and incorporate the larger and more powerful 98 kN thrust GE F414 engine, which was more likely to meet the TEJAS originally agreed specifications.

This would have meant significant change to the air inlets and also the aircraft dimensions and weight would have to increase. At the Aero India 2019, ADA unveiled a new model of the TEJAS’s Mk-II, and called it a Medium Weight Fighter (MWF). This aircraft was expected to fit into IAF’s requirement for the Medium Multi-Role Combat Aircraft (MMRCA).

This enhanced version of TEJAS, the TEJAS Mk-2 MWF would be 14.6m long with a wingspan of 8.5m (compared with 13 m and 8.2 m respectively for the TEJAS and 14.36m and 9.13m for Mirage 2000). The aircraft will have a compound delta wing with close-coupled canards. This would reduce drag in all angles of attack it was announced. The longer fuselage will allow for more fuel behind the cockpit. The Mk II would carry much more internal and external fuel.

The maximum weight of the aircraft would be 17.5 tonnes (compared to Mk 1’s 13.5 tonnes). Its external stores carrying capacity will increase from 5.3 to 6.5 tonnes. It will be equipped with a higher thrust General Electric GE-F414-INS6 engine that features a Full Authority Digital Electronics Control (FADEC) system.

To Summarize

It’s probably not another decade or two before Tejas MKII and AMCA could fly over Ladakh or Galwan Valley. Indian Navy’s rejection of Tejas fighters was a blow to HAL.

It’s highly likely that Indian Navy and Indian Air Force would buy additional fighters from Boeing, Lockheed Martin or Dassault Aviation to fulfill the requirements of future missions.

© 2020, GDC. © GDC and www.globaldefensecorp.com. Unauthorized use and/or duplication of this material without express and written permission from this site’s author and/or owner is strictly prohibited. Excerpts and links may be used, provided that full and clear credit is given to www.globaldefensecorp.com with appropriate and specific direction to the original content.

Be the first to comment

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.